Townsend Letter The Examiner of Alternative Medicine
Alternative Medicine Conference Calendar
Check recent tables of contents


From the Townsend Letter,
the Examiner of Alternative Medicine
April 2006


briefed by Jule Klotter

Search this site

Celiac Disease & Looking for What You Know
For decades in Europe, every doctor has been trained to identify celiac disease. In the US, however, celiac disease has been viewed as a "rare childhood disorder." A
Wall Street Journal (December 9, 2005) uses this disparity to show how medical education and lack of research can create "blind spots" in clinical diagnoses. Celiac disease is an inborn condition in which the person is unable to breakdown the peptides in gluten, a protein in wheat and barley that gives the grains' flour elasticity. Undigested, this protein activates an immune-system attack on the small-intestine lining, impairing the body's ability to absorb nutrients. Symptoms – if and when they appear -- include abdominal distension, vomiting, diarrhea, muscle wasting, extreme lethargy, and fatty stools. Damage to the intestinal lining can and does occur without any symptoms at all. Symptoms disappear when patients avoid gluten-containing foods: bread, pasta, and most packaged foods.

The culprit, gluten, was identified by Dr. Willem Dicke, who had noticed in 1950 that children with celiac disease improved when flour became scarce during and after World War II. During the 1960s, researchers began developing tests to identify people with the disease. Biopsies of the intestine, the first test produced, reveal destruction of the villi that line the intestine and absorb nutrients. Blood tests, developed in the 1970s and 1980s, identify celiac-related antibodies and make it easier to screen large groups of people for the disease. Testing shows that up to one percent of the population in many European countries has celiac disease. Patient groups in those countries have pushed for government-funded research, leading to more accurate tests and identification of a genetic variant in people with celiac disease. Researchers have also begun to figure out why gluten triggers the immune system to attack the intestinal lining. Publicity about celiac research has led to more diagnoses and more funding for more research, while European health authorities urge doctors to become aware of the disease and its prevalence.

Except for a short period of interest in the 1960s, US researchers have ignored celiac disease, partly because of "a perceived rarity of the condition." A lack of economic incentive has probably been another factor. Effective, dietary treatment for the disease gives drug companies no reason to study it. This lack of opportunity to develop a novel (and patentable) treatment for celiac may have discouraged research by academic researchers as well. Without publicized research studies or the drug advertising that brings an illness and its "cure" into public awareness, US doctors just assumed that celiac disease was a rare condition. A 1994 Mayo Clinic study confirmed that opinion with a finding that only one in 5,000 Americans had celiac disease. Mayo researchers used gastrointestinal symptoms in one Minnesota county to make their diagnoses instead of using diagnostic blood tests to make this sweeping claim.

As foreign-trained doctors and scientists moved to the US, their awareness of celiac disease came with them. They insisted that celiac disease was more prevalent in the US population than commonly believed. In response, the National Institutes of Health (NIH) funded a few studies in the mid-to-late 1990s. Peter Green and colleagues at Columbia University surveyed US celiacs. Their 2001 study reported that these people lived with symptoms for an average of 11 years before getting diagnosed with celiac. A 2003 study that screened 13,000 people found the incidence of celiac to be one in 133 Americans, similar to the incidence in many European countries. In 2004, the NIH convened a panel of experts to consider the question of celiac prevalence. The experts came up with an estimate that is very close to the percentage found among Europeans: 0.5% to 1% of the U.S. population – about 1.5 million to three million people.

It makes me wonder what other conditions with non-technical solutions are being ignored.

Hamilton, DP. Belatedly, an illness of the intestines gets notice in U.S.
The Wall Street Journal. December 9, 2005;A1, A9.

Basic Health Publications User's Guide to Probiotics by Earl Mindell, RPh, PhD, really opened my eyes to the many ways in which "friendly" bacteria (probiotics) maintain our health. First, probiotics commonly found in a healthy GI tract inhibit the growth of pathogens by producing lactic acid. Yeast and harmful bacteria tend to flourish in environments with a neutral pH. Lactic acid holds them in check. Some probiotics also produce hydrogen peroxide, which the immune system uses to destroy pathogens. One of the predominant friendly bacteria, L. acidophilus (DDS-1 strain), produces acidophilin. This substance is lethal to at least 22 potentially harmful bacteria, including E. coli, Shigella dysenteriae, Staphylococcus aureus, Streptococcus lactis, Klebsiella pneumoniae, and Salmonella schottmuelleri.

In addition to preventing the growth of harmful bacteria, probiotics protect us in other ways. First, they keep harmful microbes from adhering to or crossing the intestinal lining and entering into the bloodstream. Mindell says, "Friendly bacteria can actually move through already-adhered layers of harmful bugs to offer this protection." Probiotics also support immune response throughout the body. Various strains of friendly bacteria increase the activity of lymphocytes (white blood cells that can produce antibodies) and phagocytes (cells that engulf and digest microbes and debris). Probiotics, such as Lactobacillus, stimulate antibody production as well. The friendly bacteria even have a role in disrupting autoimmune responses. They are known to increase interleukin-10 activity. Interleukin-10 is a cytokine that tell the immune system to calm down before it harms us.

Not only do these friendly bacteria defend our bodies, they also nourish us. Probiotics in the intestines produce B-complex vitamins, including biotin, thiamine (B1), riboflavin (B2), pantothenic acid (B5), and pyridoxine (B6). They also make short-chain fatty acids, antioxidants, amino acids, and vitamin K. Probiotics also aid digestion. Many strains of these bacteria produce enzymes that help break down food. The bacteria's acidifying effect creates an environment that promotes the passage of nutrients through the intestinal wall and into the bloodstream. Nutrients in foods that have been fermented with bacteria cultures (e.g., yogurt, kefir, sour cream, sauerkraut, miso, tempeh) are more readily absorbed than the nutrients in non-fermented milk, cabbage, or soy.

Until recently, friendly bacteria have been a regular part of everyone's diet from the first day that they have their mother's milk. All traditional diets include lacto-fermented food. Fermentation is a traditional way to preserve vegetables, according to Sally Fallon, author of Nourishing Traditions. People eating a Western diet of processed, refined foods are not ingesting these friendly bacteria. In fact, the refined carbohydrates and sugars so common in the Western diet actually promote the growth of yeasts and harmful bacteria. In addition to processed foods, many medications, including antibiotics, antacids, synthetic estrogens (birth control pills and hormone replacement), and steroid drugs (oral and inhaled) discourage probiotic growth. Chlorinated water also damages friendly bacteria. Eating fermented foods regularly boosts the probiotic population. (Be aware that probiotic bacteria do not last long in yogurt. Watch due dates and avoid yogurts with gelatin, used to give yogurt its thickness as bacteria dies off.) A diet that contains plenty of fiber-rich vegetables, fruits, beans, and whole grains provides the probiotics with their food-of-choice: fructooligosaccharides (FOS).

Sometimes, probiotic supplements are needed to get the gut back on track. In choosing supplements, Dr. Mindell recommends choosing a brand that has a statement about the number of living bacteria and an expiration date on the bottle. Bacteria viability decreases with exposure to heat, moisture, and oxygen, so refrigeration is advisable. In addition, liquid preparations tend to be unstable. Dr. Mindell recommends that a healthy person take two to five billion CFU/day. ("CFU" stands for "colony forming units.") People with gastrointestinal problems can take up to ten billion CFU/day.

Dr. Mindell recommends that adults and children over two years take supplements containing L. acidophilus and/or other Lactobacillus strains and strains of Bifidobacteria. For younger children, he recommends a powdered formula prepared specifically for babies, which generally includes Bifidobacteria, with lesser amounts of L. rhamnosus, L. Paracasei, and L. salivarius. For children, the powdered supplement can be taken mixed with juice or milk. Adults should take probiotic capsules, or powder mixed in unchilled water, ten to 30 minutes before meals. People using the higher therapeutic dose may experience "cleansing symptoms" as yeast and harmful bacteria die off. Dr. Mindell recommends that people with severe immune dysfunction or life-threatening illness proceed cautiously and check with their doctor before using probiotics, as seriously ill people have developed infections in rare cases.

Fallon S. Nourishing Traditions. Washington, DC: New Trends Publishing Inc.; 1999: 89.
Mindell E. Basic Health Publications User's Guide to Probiotics. North Bergen, New Jersey: Basic Health Publications, Inc.; 2004.

Questioning Antibiotics
As scientists learn more about the bacteria that live in our bodies, some are questioning the benefits of antibiotics, according to an article by Jessica Snyder Sachs in Discover (November 2005). Bacteria – some helpful, some harmful – "outnumber other cells in the human body by ten to one." When antibiotics are used to kill a specific pathogen, all the other bacteria are also affected. For years, practitioners have assumed that antibiotics are the magic bullet that kills off disease-causing organisms. The effects on the friendly bacteria are regrettable but can be remedied with yogurt or probiotic supplements. Scientists are finding a more complicated picture and are even considering the possibility that supporting probiotic growth may provide an alternative to the use of antibiotics.

By using new technologies like polymerase chain reaction (PCR), researchers are finding "stealth infections," inactive pathogens that may cause chronic health problems years after the initial infection has been successfully treated with antibiotics. These stealth bacteria can be transmitted to another person where they will become active. Alan Hudson, a microbiologist at Wayne State Medical School (Detroit, Michigan), used PCR to identify traces of chlamydia DNA in a pair of newlyweds. Before marriage, the husband had been treated with antibiotics for sexually transmitted chlamydia. After the wedding, the wife developed chlamydia. The husband accused her of being unfaithful, but Hudson proved that the small amount of bacteria left after antibiotic treatment had become active in its new host. In addition to affecting new hosts, these residual pathogens may contribute to chronic ailments. Hudson has found persistent forms of chlamydia in the joints of people with inflammatory arthritis and in the brain cells of Alzheimer's patients. "With new technologies like PCR, researchers are turning up stealth infections everywhere," Sachs writes, "yet they cause problems only in some people sometimes, often many years after the infection." Researchers simply do not understand the dynamics yet.

In addition to pathogenic bacteria becoming resistant to antibiotics, microbes that normally inhabit our intestines have also developed antibiotic-resistance and they readily pass that resistance on to other bacteria traveling through the GI tract. Microbiologist Abigail Salyers at the University of Illinois (Urbana-Champaign, Illinois) has been studying the genus Bacteroides, a type of bacteria that constitutes about one-fourth of the bacteria in a health human gut. Bacteroides thetaiotaomicron (B. theta) breaks down difficult-to-digest plant matter, but its contributions to our health go far beyond that. Research led by Jeffrey Gordon, a gastroenterologist/microbiologist at Washington University (St. Louis, Missouri), shows that B theta "helps guide the normal development and functioning of the intestines—including the growth of blood vessels, the proper turnover of epithelial cells, and the marshaling of components of the immune system."

After decades of antibiotic use, these bacteria – like others in the body – have developed resistance. Salyers and her team found a DNA sequence that protects against tetracycline antibiotics. That sequence appeared in less than 25% of human-based Bacteroides found in fecal samples taken during the 1970s. The incidence exceeded 85% by the 1990s, even among healthy people who had not taken antibiotics in years. Salyers has found that this resistance is being passed to other types of bacteria in many ways, including direct cell-to-cell transfer (conjugation) and transformation (one bacterium picks up DNA released by another bacterium). "Viewed in this way, the human colon is the bacterial equivalent of eBay," says Salyers. "Instead of creating a new gene the hard way—through mutation and natural selection—you can just stop by and obtain a resistance gene that has been created by some other bacterium." Her team found that administration of antibiotics actually stimulates Bacteroides to pass out resistance genes.

Several groups of researchers are trying to understand the contributions that bacteria make to a healthy body. David Relman and his team at Stanford University and the VA Medical Center in Palo Alto, California are working to identify the hundreds of bacteria that they find in the mouths, stomachs, and intestines of healthy people. Jeffrey Gordon's team is giving combinations of normal intestinal bacteria to germ-free animals. They are looking for correlations between intestinal flora and health and/or disease. Eventually, they intend to analyze stool samples from people throughout the world to see if the same organisms in the same amounts are ubiquitous among all healthy people. Although some believe that long-term antibiotic therapy is necessary to treat difficult, chronic illnesses, Alan Hudson says, "Before we set out to eradicate our bacterial fellow travelers we'd damn well better understand what they're doing in there."

Sachs, JS. Are antibiotics killing us? Discover. November 2005; 36-40.

Chia Seeds
Looking for a nutritious addition to your diet? Chia seeds, soaked in water, may be it. A traditional food, valued by indigenous people in arid regions of North America and South America, chia seeds contain all of the essential amino acids, a high percentage of alpha-linolenic acid, and many vitamins and minerals. Apaches, Aztecs, Mayans, and many other tribes have long used the seeds to promote stamina and energy. Protein accounts for 19% to 23% of chia seed, making it richer in protein, by weight, than any other known seed or grain. About 32% to 39% of the seed is oil – 60% to 63% of which is omega-3 (alpha-linolenic) – and the rest is omega-6, making an unusually favorable omega-3 to omega-6 ratio of 3:2. Chia is a richer source of alpha-linolenic acid, an essential fat that the body uses to make EPA and DHA, than flaxseed. Unlike flaxseeds, chia seeds contain antioxidants (chlorogeneic acid, caffeic acid, and flavonol glycosides) that slow oxidation of the fragile oil. Chia seed also contains all the B vitamins, including a significant amount of thiamin (B1). One ounce of seed provides 29% of the RDA for thiamin. The seed is also a rich source of calcium; 100 grams of seed (about two ounces) contains 600 milligrams. The same amount of milk provides 120 milligrams of calcium. Chia seed also contains phosphorus, potassium, zinc, boron, and copper. Finally, chia is an excellent source of soluble and insoluble fiber.

In addition to its nutritional benefits, chia has the ability to absorb at least nine times its volume in water or other liquid. Mucilloid-soluble fiber in the seed's outer layer protects it from drying-out in the desert air. That same fiber forms a gel when it comes in contact with liquid, including stomach juices. This gel is credited with slowing digestion and preventing quick rises in blood sugar levels. It also helps prolong hydration. Making the gel is very easy. Simply pour one part chia seed into nine or ten times as much water or juice and mix with a fork or whisk. (Pouring water onto the seed will cause clumping.) Let it stand for a few minutes, then mix again. James F. Scheer, author of The Magic of Chia, suggests letting the gel set for at least 15 minutes before using. It can be stored in the refrigerator for up to two weeks. The gel has a tapioca-like consistency and virtually non-existent taste, so it can be easily added to hot cereals, batter for pancakes or French toast, yogurt, breads, and puddings. Using prepared chia gel in salad dressings, dips, milkshakes, etc., adds volume without adding calories, since the gel is primarily water.

Chia seeds are about to break into the mainstream marketplace with Salba™, a nutrient-dense form of chia developed by two Argentine brothers, Adolfo and Alfredo Mealla. Convinced of chia's nutritional benefits, the men sought a way to make chia seed more visually appealing for use in baked products. Although it didn't make a difference in taste, people complained about the look of the black seeds. The brothers used traditional plant breeding techniques (i.e., collecting and planting white chia seeds instead of using the more common black ones) to create Salba™. Salba™ has been the subject of clinical research at the University of Toronto. Researchers have found that the seed reduces inflammation (measured as C-reactive protein), blood pressure, and the risk of cardiovascular disease. It also has a blood thinning effect and helps control diabetes. The Toronto-based company Salba Research & Development says that Salba™ has more omega-3 fatty acids and protein than Mexican chia. Its ability to absorb liquid is also greater. The company is collaborating with a Denver-based tortilla chip manufacturer that wants to make a product that is 95% organic corn and five percent Salba™. Salba™ president Larry Brown says the company expects to produce one million pounds of Salba™ by June 2006, with an eventual goal of ten million pounds a year.

Bauman, Ed, PhD. Chia seeds. Available at: Accessed January 1, 2006.
Fletcher, Anthony. "World's richest" whole food omega-3 source prepares for take off. Available at: Accessed January 1, 2006.
Hoover, Gloria. Chia seeds for health. Available at Accessed January 1, 2006.
Introducing Salba™. Available at Accessed January 1, 2006.
Scheer, James F. The Magic of Chia. Berkeley, California; Frog, Ltd.; 2001.

Medical personnel are taught that geophagia (eating clay or dirt) is a sign of dysfunction, associated with mineral imbalance, such as iron deficiency, but some clays have had a traditional place in detoxification and nutrition. Observers have noticed that both humans and animals use specific clays as a treatment for gastrointestinal problems and as a nutritional supplement. During his travels in the 1920s and 1930s, Weston A. Price, DDS, observed that people eating traditional foods in the Andes, in central Africa, and in Australia dissolved small amounts of clay in water and dipped their food in it while eating. The people in each location told Price that the clay solution prevented "sick stomach." When Price developed dysentery during his travels in central Africa, an English doctor treated him with a suspension of clay used by native people. "It proved very effective," Price wrote in his book Nutrition and Physical Degeneration. A study by T. Johns and M. Duquette investigates edible clays and their use by Pomo Indians of California. The researchers found that clay adsorbs (adheres to) the bitter and toxic compounds in acorns, a stable food for the people, rendering the compounds harmless – and preventing ‘sick stomach.'

Not all clays have a beneficial effect on health. Clay composition varies in the type and the amounts of elements, ionic electrical charge, particle size, and purity. Some clays, like those used by the Pomo Indians and kaolin (an ingredient in Kaopectate), adsorb toxins and prevent or treat diarrhea. When applied externally, clay's adsorptive quality can relieve inflammation and pain.

In addition to the detoxification effect, suspensions of edible clays provide minerals. During the 1960s, Benjamin H. Ershoff at the University of Southern California (Los Angeles, California) performed animal experiments with clay. He found that some clays, such as one containing hallyosite and some montmorillonite, had significant bone- growth-promoting activity on rats, while another clay sample containing kaolin and hydrobiotite showed virtually no effect on bones or teeth. A.A. Kurnick and B.L. Reid performed a series of studies on the effect of adding bentonite clays to poultry feed and found that growth rate increased and the chickens ate less. J.H. Quisenberry reported that laying hens' body weight and the size of their eggs increased when specific clays and bentonites made up two-and-one-half percent and five percent of their diet. Birds receiving a clay identical to the montmorillonite one used by Ershoff also laid more eggs than the control hens. Ershoff's clay was provided by California Mineral (Brawley, California), now known as California Earth Minerals.

Calcium Montmorillonite - Living Clay. Available at Accessed January 1, 2006.
California Earth Minerals Corp. web site. Available at Accessed January 1, 2006.
Ershoff, BH, Bernick S. Effects of a clay supplement on body weight increment, bones, and teeth of rats. Journal of Dental Research. 1968;47(2): 260-271.
Johns T, Duquette M. Detoxification and mineral supplementation as functions of geophagy. (Abstract) American Journal of Clinical Nutrition. 1991 Feb;53(2):448-56.
Price, WA, DDS. Nutrition and Physical Degeneration. 6th ed. La Mesa, California: The Price-Pottenger Nutrition Foundation; 2000.

Thimerosal, Vaccines, and Autism
For years, environmental attorney Robert F. Kennedy, Jr. had met mothers with autistic children who believed that the mercury-containing preservative in childhood vaccines had caused their child's disability. Skeptical that autism could be blamed on a single factor, Kennedy looked into the controversy. He used the Freedom of Information Act to gain access to transcripts showing that Centers for Disease Control and Prevention (CDC) officials have been aware of a link between thimerosal and autism since 2000. He studied the scientific research and spoke with many researchers with expertise in mercury poisoning. The results of his investigation "convinced [him] that the link between thimerosal and childhood neurological disorders is real." Kennedy presents his findings in an article published in Rolling Stone (June 30-July 14, 2005), in collaboration with

In June 2000, the CDC assembled a collection of government scientists, high-level officials from the CDC and FDA, the top vaccine specialist from the World Health Organization, and representatives from every major vaccine manufacturers. The impetus for this secret meeting was a study performed by CDC epidemiologist Tom Verstraeten. Verstraeten had analyzed the medical records of 100,000 children in the CDC database and discovered a link between thimerosal and neurological disorders, such as speech delays, attention-deficit disorder, hyperactivity, and autism. According to meeting transcripts, many attendees were concerned about lawsuits and the economic effect that the information would have on the pharmaceutical companies. Some worried that the information would shake public trust in life-saving vaccines, putting children's lives at risk.

Instead of immediately halting the use of the preservative, the CDC stopped publication of Verstraeten's findings and told outside scientists that the original data had been lost. The agency then gave its vaccine database to a private company and declared it off-limits to researchers. To put the controversy to rest, the CDC paid the Institute of Medicine (IOM) to conduct a study that would "rule out" thimerosal's link to autism. Using the Freedom of Information Act, Kennedy acquired the transcript from the IOM's Immunization Safety Review Committee Meeting in January 2001. Even though this was the committee's first meeting and the researchers had not yet had a chance to examine scientific evidence, committee chairman Dr. Marie McCormick told the researchers "We are not ever going to come down that [autism] is a true side effect." When the IOM released its final report in May 2004, the conclusion found no proven link between autism and thimerosal in vaccines. The report based its conclusion on four epidemiological studies that have been heavily criticized for relying on data from Europe, where children had less exposure to thimerosal than most American children. Also, children who were too young to be diagnosed with autism were included in the studies, and some who had autistic symptoms were excluded.

The June 2000 CDC meeting was not the first sign of thimerosal's dangers; studies as early as 1930 had pointed to its toxicity. In 1971, thimerosal's developer Eli Lilly recognized that the preservative was "toxic to tissue cells in concentrations as low as one part per million – 100 times weaker than the concentration in a typical vaccine." The company, however, continued to use it. Ten infants at a Toronto hospital died in 1977, after antiseptic that contained the preservative was used on their umbilical cords. Somehow the toxicity escaped CDC's attention. In 1982, the agency recommended that additional injections be added to an infant's vaccine schedule. Newborns were to begin a series of hepatitis B vaccines before leaving the hospital. Then, at two months, babies would receive haemophilus influenzae B and diptheria-tetanus-pertussis immunizations. Kennedy learned that Dr. Maurice Hilleman, "one of the fathers of Merck's vaccine programs," recommended, in 1982, that the company remove thimerosal from the vaccine formulas used on infants and children because of the mercury hazard. The company rejected his recommendation because of "cost considerations." The mercury-based preservative lets pharmaceutical companies package vaccines in multiple-dose vials instead of more costly single-dose vials. Manufacturers continue to use thimerosal in multiple-dose vaccines, which are sent overseas to areas at risk of epidemics. Most children's vaccines now sold in the US have, at most, trace amounts of the preservative. However, flu vaccines and tetanus boosters still contain thimerosal.

The medical establishment and several mainstream media groups attacked Mr. Kennedy and the article's publishers. All asserted that thimerosal was not linked to the escalation of neurological disorders among children. None addressed the CDC cover-up that attorney Kennedy had unearthed using the Freedom of Information Act. Kennedy is not alone in his opinion that the CDC and FDA failed to protect children. A House Government Reform Committee report, released in May 2003, said: "Thimerosal used as a preservative in vaccines is directly related to the autism epidemic….This epidemic in all probability may have been prevented or curtailed had the FDA not been asleep at the switch regarding a lack of safety data regarding injected thimerosal, a known neurotoxin." The committee report, the culmination of a three-year investigation of thimerosal, states that the FDA and other government agencies failed to act due to "institutional malfeasance for self-protection" and "misplaced protectionism of the pharmaceutical industry."

State statistics from the departments of education reflect the enormity of the autism epidemic. In her article, "Pharma's Poisoned Generation," Evelyn Pringle says, "…in Ohio in 1992-93, there were only 22 cases of autism, by 2003-2004 there were 5,146. In Illinois, there were only five cases twelve years ago and 6,005 in 2003-4." All states have seen similar elevations. Children who have received less thimerosal in their vaccines during the past few years are reaching preschool age, the age at which public health agencies begin diagnosing autism. After ten years of increases, the state of California began seeing a gentle decline in its number of new autism cases in 2003, 2004, and 2005. According to Autism Research Review International, Indiana is showing the same trend. Meanwhile, China has experienced an explosion in the number of children with autism since thimerosal-preserved vaccines arrived from the US in 1999. India, Argentina, Nicaragua, and other nations using thimerosal-preserved vaccines are also experiencing high rates of autism.

Autism rates dropping in California—is phase-out of thimerosal the reason? Autism Research Review International. 2005:19(2); 1.
Editors. Kennedy report sparks controversy. Available at Accessed November 8, 2005.
Kennedy, RF, Jr. Deadly immunity. Available at Accessed on November 8, 2005.
Olmsted, D. The age of autism: "a pretty big secret." Available at Accessed December 12, 2005.
Pringle, E. Pharma's poisoned generation. Available at Accessed December 8, 2005.

EDTA Chelation
EDTA ChelationThe Chelation Controversy, a Basic Health Guide by Gregory Pouls, DC, FICN, and Maile Pouls, PhD, introduces readers to the detoxification benefits of chelation therapy. Although our bodies have several detoxification pathways to remove harmful metals, chemicals, and toxins, we may ingest and inhale more than these pathways can handle. What it does not excrete through urine, feces, or sweat, the body stores in fatty tissue and organs. These metals and chemicals cause free-radical damage and promote degeneration. Chelation (pronounced ‘key-LAY-shun') involves intravenous injection or oral ingestion of a chelating agent that will latch onto metals and minerals and isolate them so that they can be excreted from the body.

Ethylenediaminetetraacetic acid (EDTA), a synthetic amino acid, is one of the most widely studied and used chelating agents. EDTA is not as effective in removing mercury as other agents, such as 2,3 dimercaptosuccinic acid (DMPS), but it does remove some. Its FDA-approved use is for the removal of lead. In addition to removing a variety of heavy metals, EDTA has the benefit of chelating unwanted calcium deposits that have formed in arteries and tissues, thus improving blood circulation. It is also an antioxidant. Decades of use documents IV EDTA chelation's ability to treat cardiovascular disease, an off-label use that now is being testing in a National Institutes of Health (NIH) clinical study. According to the authors, EDTA chelation therapy has also helped people with Alzheimer's disease, aneurysm, arthritis, autoimmune conditions, cancer, cataracts, diabetes, emphysema, gallstones, hypertension, kidney stones, Lou Gehrig's disease (amyotrophic lateral sclerosis), osteoporosis, Parkinson's disease, scleroderma, senile dementia, stroke, and varicose veins. The body does not metabolize EDTA, and – unlike some other chelating agents – it has few side effects.

Before starting chelation therapy of any kind, most doctors recommend blood testing to assess nutrient status, blood-lipid levels, kidney function, and liver function. EDTA and the metals attached to it are excreted in urine, so both the kidney and liver must be working properly. Such tests are repeated periodically to monitor progress and to prevent side effects and complications.

At times, doctors include nutrient IV treatments in their protocol to support the liver, protect against free-radical damage, and aid the chelation process. Some nutrients compete with harmful metals for cell-binding sites. Having an abundance of the beneficial compounds helps prevent heavy-metal deposits. Magnesium, for example, competes with aluminum. Vitamin C and amino acids containing sulfur are among the nutrients that protect against arsenic, lead, mercury, and cadmium. Nutrient IV treatments can also address specific health complaints. A magnesium infusion, for example, is helpful for those with asthma and migraines. Infusions containing vitamin C are beneficial for fighting bacterial and viral infections. After undergoing a course of IV chelation, oral chelation formulas are available to maintain protection against toxin and metal buildup. Used as a first-line treatment for heavy metal toxicity, oral EDTA chelation is far less efficient that IV therapy because only an estimated five percent of the chelating agent reaches the bloodstream.

An IV chelation treatment costs about $100, plus the charge for an office visit, and takes two to three hours for the solution to enter the bloodstream. Twenty to thirty IV chelation treatments are usually required, according to the authors, making treatment difficult for people who do not live near a doctor who is trained in IV chelation

Pouls, Gregory, DC, FICN & Pouls, Maile, PhD. The Chelation Controversy. Laguna Beach, California: Basic Health Publications, Inc.; 2005.

Chelation for Autism
The connection between mercury poisoning and autism and the use of chelation therapy as a treatment made front-page news in 2005. Although government officials deny a link between autism and the mercury-based vaccine preservative thimerosal, some researchers and parents of autistic children believe otherwise. The connection gains support from chelation therapy's reported success in reducing autistic symptoms. Chelation therapy, a treatment used for decades, removes heavy metals from the body. North Carolina toxicologist Rashid A. Buttar testified before a House subcommittee, chaired by Congressman Dan Burton (R-Ind), about TD-DMPS, used to treat his autistic son as well as other patients. Nineteen of 31 patients given the medication for over a year "had a complete loss of their autistic symptoms" (The Wall Street Journal. February 15, 2006). The Autism Research Institute, a non-profit advocacy group based in San Diego, California, reports that chelation therapy is "one of the most beneficial treatments for autism and related disorders."

This Wall Street Journal article includes a chart, provided by the Autism Research Institute, that describes the pros and cons of the three most commonly used chelation agents: DMSA, DMPS, and TTFD. DMSA (sodium 2,3 dimercaptopropane-1 sulfate), a chelator that comes in an oral preparation, removes several metals, including lead and mercury. It has been FDA-approved to treat lead poisoning in year-old children. Long-term use can cause zinc deficiency, liver damage, and bone marrow suppression. It can also worsen gastrointestinal problems, which are common among children with autism. DMPS (2,3 dimercaptosuccinic acid), which comes in a cream form for topical application, causes fewer gastrointestinal problems but does have "potentially serious side effects" that require regular monitoring with urine and blood tests. DMPS, which does not yet have FDA approval, is the subject of an Arizona State University clinical trial involving 80 autistic children, ages three to nine. This chelator can be compounded for individual patients by compounding pharmacists. TTFD (thiamine tetrahydrofurfuryl disulfide), which comes in oral form and as a cream, has a good safety record. The primary drawback is its "skunk-like" smell and bad taste. It has not been approved by the FDA and must also be made by a compounding pharmacy.

Four months after the publication of The Wall Street Journal's informative article, The New York Times published its own front-page article. This one denigrates chelation therapy and derides the theory that autism is linked to mercury poisoning and thimerosal. The hazards of chelation are emphasized and the hazards of heavy metal toxicity are ignored. In an accompanying article, Dr. Susan Swedo of the National Institutes of Mental Health says that "it 'isn't responsible to prescribe chelation for autism."

Harris G, O'Connor A. Experts reject some therapies. The New York Times. June 25, 2005;A12.
Harris G, O'Connor A.. On autism's cause, it's parents vs. research. The New York Times. June 25, 2005;A1, A12.
Marcus AD. A radical approach to autism. The Wall Street Journal. February 15, 2005; D1, D4.


Subscriptions are available for Townsend Letter, the Examiner of Alternative Medicine magazine, which is published 10 times each year.

Search our pre-2001 archives for further information. Older issues of the printed magazine are also indexed for your convenience.
1983-2001 indices ; recent indices

Once you find the magazines you'd like to order, please use our convenient form, e-mail, or call 360.385.6021 (PST).


Order back issues
Advertise with TLDP!
Visit our pre-2001 archives
© 1983-2006 Townsend Letter
All rights reserved.
Web site by Sandy Hershelman Designs
September 21, 2006